Intelligent Risk Identification and Analysis in IT Network Systems

نویسنده

  • Masoud Mohammadian
چکیده

With ever increasing application of information technologies in every day activities, organizations face the need for applications that provides better security. The existence of complex IT systems with multiple interdependencies creates great difficulties for Chief Security Officers to comprehend and be aware of all potential risks in such systems. Intelligent decision making for IT security is a crucial element of an organization’s success and its competitive position in the marketplace. This paper considers the implementation of an integrated attack graph and a Fuzzy Cognitive Maps (FCM) to provide facilities to capture and represent complex relationships in IT systems. By using FCMs the security of IT systems can regularly be reviewed and improved. What-if analysis can be performed to better understand vulnerabilities of a designed system. Finally an integrated system consisting of FCM, Attack graphs and Genetic Algorithms (GA) is used to identify vulnerabilities of IT systems that may not be apparent to Chief Security Officers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intelligent identification of vehicle’s dynamics based on local model network

This paper proposes an intelligent approach for dynamic identification of the vehicles. The proposed approach is based on the data-driven identification and uses a high-performance local model network (LMN) for estimation of the vehicle’s longitudinal velocity, lateral acceleration and yaw rate. The proposed LMN requires no pre-defined standard vehicle model and uses measurement data to identif...

متن کامل

A Comparative Study of the Neural Network, Fuzzy Logic, and Nero-fuzzy Systems in Seismic Reservoir Characterization: An Example from Arab (Surmeh) Reservoir as an Iranian Gas Field, Persian Gulf Basin

Intelligent reservoir characterization using seismic attributes and hydraulic flow units has a vital role in the description of oil and gas traps. The predicted model allows an accurate understanding of the reservoir quality, especially at the un-cored well location. This study was conducted in two major steps. In the first step, the survey compared different intelligent techniques to discover ...

متن کامل

Identification and ranking risks of horizontal directional drilling for oil & gas wells by using fuzzy analytic network process, a case study for Gachsaran oil field wells

Risk ranking of Horizontal Directional Drilling (HDD) for gas and oil wells is a key criterion in the project feasibility, pricing and for introducing a risk management strategy that aims to reduce the number of failures in the installation phase and its negative consequences. HDD is currently widely used in drilling wells in Iran, but research in the area of identification and risks ranking of...

متن کامل

Experimental and finite-element free vibration analysis and artificial neural network based on multi-crack diagnosis of non-uniform cross-section beam

Crack identification is a very important issue in mechanical systems, because it is a damage that if develops may cause catastrophic failure. In the first part of this research, modal analysis of a multi-cracked variable cross-section beam is done using finite element method. Then, the obtained results are validated usingthe results of experimental modal analysis tests. In the next part, a nove...

متن کامل

Analysis of Hazard Identification Methods in Process Industries Using Analytic Network Process Technique (ANP)

Background and aims: Hazard identification is a critical factor to ensure safe design and operation of systems in the process industries. Process industries are one of the most complex systems, with a variety of equipment, control systems, and executive procedures. In these industries, the use of hazardous materials as raw materials or products is quite common. Interactions between technical co...

متن کامل

A novel method based on a combination of deep learning algorithm and fuzzy intelligent functions in order to classification of power quality disturbances in power systems

Automatic classification of power quality disturbances is the foundation to deal with power quality problem. From the traditional point of view, the identification process of power quality disturbances should be divided into three independent stages: signal analysis, feature selection and classification. However, there are some inherent defects in signal analysis and the procedure of manual fe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011